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A method of estimating short topological pathways for solid±solid reconstruc-

tive phase transitions is proposed. To screen the simplest pathways out of the

in®nite manifold in con®gurational space, a Fourier function approach is used,

based on periodic nodal (PNS) and periodic equi-surface (PES) descriptors. The

simplicity of the chosen functions representing the structures in question and the

linear transition approach provide for most simple relevant transition models.

Here it is shown that the tetrahedral networks of quartz and tridymite are

represented topologically and transformed into each other by this approach. A

trigonal network related to �-ThSi2 and B2O3 appears as intermediate during

the transition model of the periodic functions. The transition path found in this

way seems to be of exciting directness and of fundamental topological interest.

The presented approach is not restricted to this speci®c case and is expected to

be applicable to a wide variety of reconstructive phase transitions of solids.

1. Introduction

Reconstructive phase transitions (RPT) are of ®rst-order

character and show complicated transition processes that

occur when the time correlation between structural domains in

space is lost and independent nucleation processes have to

take place. Different from second-order transitions, which

proceed under strict symmetry control (Landau & Lifshitz,

1959), there is no unequivocal way to de®ne the topology of

the transition pathway. In a beautiful monograph, Toledano &

Dmitriev (1996) have discussed different approaches to this

topic in much detail. Their approach involves a reinspection of

the physical meaning of the order parameter and its de®nition

in terms of non-linear periodic functions. A general difference

with the Landau theory concerns the form of the order

parameter and its relation to a speci®c geometrical

mechanism, which for a particular phase transition is assumed

to be of a given type (Toledano & Dmitriev, 1996, p. 171). The

last point in particular raises some problems for the general-

ization of the approach.

Quite recently, Alivisatos et al. were able to prove that in

some nanocrystals RPT proceed through a single nucleation

per particle and thus show cooperative behaviour for each

nanoparticle (Chen et al., 1997). In such small domains that

transform homogeneously, nature has to solve the topological

problem of transforming one structure into another despite

the loss of long-range correlations between the domains. For

most RPT, the available excitation energies do not allow for an

intermediate melting process of larger domains. Although it is

clear that the transformation will most likely start at impurities

or faults, it has still to travel through the bulk material for the

RPT to complete. It is trivial that nature will choose the most

economical transition path. However, the question is what

does most economical mean? Surely the preferred pathway

will utilize low excitation energies but kinetics will play a role

as well, i.e. a faster RPT pathway with only slightly higher

excitation energy will compete with an energetically more

favourable but slower one. One important prerequisite of fast

kinetics is short displacive and/or diffusive dislocations.

We will try to systematically approach the problem of

elucidating simplest pathways by a powerful topological

strategy. Such a strategy was worked out with the help of PNS,

as they are de®ned by von Schnering & Nesper (1991). This

approach utilizes a Fourier Ansatz, which codes the funda-

mental topological information of a space group or of a

speci®c structure in the form of a short Fourier summation.

A family of surfaces in real space can be generated from a

Fourier summation

f �x; y; z� �P
h

P
k

P
l

S�hkl��� �� cos�2��hx� ky� lz� ÿ ��hkl��
�1�

according to the expressions
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(von Schnering & Nesper, 1991). For f �x; y; z� � 0, the

resulting surface is called a periodic nodal surface (PNS)

because it may have distinct symmetry properties and, for

f �x; y; z� 6� 0, the surface is a periodic equi-surface (PES) (von

Schnering & Nesper, 1985). Both PNS and PES will be called

representatives in the following, which means that they

represent the topological characteristics of either a space

group or a structure (type) or set of structures.

Although an arbitrary number of Fourier coef®cients may

be chosen, only summations with a small number of structure

factors have proven to be useful for the elucidation of the

general topological features of a structure or a set of structures

of a given symmetry (von Schnering & Nesper, 1991). Selected

comparisons of all structure types belonging to a speci®c space

group have shown that very few ± in general less than the ®rst

ten ± structure factors are suf®cient to clearly discriminate

between the types. In the case of space group No. 227 Fd�3m,

only eight structure factors are suf®cient for discriminating all

types given by the TYPIX database (PartheÂ, 1995) by their

phase permutations only (Leoni, 1998). These small sets of

structure factors are not arbitrarily chosen though, but only

those (hkl) combinations are considered that arise when

systematically starting off from the centre of reciprocal space.

The symbol S(hkl) for the structure factors was used instead

of F(hkl), which is meant to indicate that the equation is made

independent of any physical quantity like the electron density.

The S(hkl) are generated by Fourier transforming a point

con®guration of dimensionless � functions. So S(hkl) has the

meaning of a geometrical structure factor (von Schnering &

Nesper, 1991).

In the following, we will use the expression Sh not for a

single structure factor but for a complete set of equivalent

structure factors S(hkl) under a given symmetry. Each set

consists of structure factors with reciprocal-lattice vectors h

given by the Laue symmetry related to the space group under

consideration and of a set of phases de®ned by

��PTh� � ��h� ÿ 2�hTt (Shmueli, 1993). P and t are the

rotation and translation parts of a symmetry operation of the

space group. It has been shown that using simple surface

representatives allows the generalization of the topological

analysis of structures beyond the particular features that each

individual structure contains. This requires selection of only

one or very few sets Sh with |h| as small as possible, but being

characteristic for a space group. For example, none of the sets

Sh with h � �100�, (110), (111), (200), (210), (211) or (220) is

characteristic for the cubic space group P�43m (Laue symmetry

m�3m) as a single set because any choice of phases consistent

with cubic symmetry will generate representatives that either

show a centring or belong to a supergroup. For example, in the

case of h � �100� or (210), the representatives have the

symmetry Pm�3m (von Schnering, 1993).

In the following, structure-factor sets will be characterized

by the notation Sh(h, |Sh|, �), h � �hkl� or �hkil�, where h and

� refer to only one S(hkl) of the set and i to trigonal or

hexagonal metric.

Equations (2) and (3) were the starting point for the de®-

nition of simple mathematics and a simple method for the

calculation of functions that contain enormous potential for

the description and understanding of crystal structures.

Numerous examples of such a correlation have been given

(Andersson & Jacob, 1997, 1998; Hyde et al., 1997; Leoni, 1998;

von Schnering & Nesper, 1987; Oehme, 1989; ZuÈ rn, 1998). A

few examples of PNS and of the correlation between struc-

tures and PNS are given in Fig. 1. PNS and periodic minimal

surfaces (PMS) have been shown to be very similar in their

spatial coordinates in many cases and the relevance of PMS

for the description and understanding of solid-state structures

was demonstrated some time ago (Faelth & Andersson, 1982;

Andersson et al., 1984). The close relation between the two

periodic surface types ± though not rigorously proved ± is a

result of two conditions: (i) they have to obey the same

symmetry requirements; (ii) they constitute very smooth and

simple functions in the frame of the same symmetry elements

if the h vectors are chosen to be as short as possible (see

above).

Among the different ways of correlating crystal structures

and PMS, PNS or PES, we mention only some relevant cases:

(i) A framework matches the surface in the way that all atoms

are on the surface; in other words, the atoms are embedded in

the surface. (ii) A structure or partial structure is enveloped by

the surface. This allows for the description of a network or

atomic arrangement as a labyrinth net (Hyde & Andersson,

1984) of such a periodic surface.

If space is partitioned into two parts that are congruent or

transformed into each other by a symmetry operation

embedded in the surface, then the surface is called balanced

and the groups of the surface and of the labyrinths form a

group±subgroup pair of index 2. In the same way, structures on

both sides of a balanced surface may be congruent or enan-

tiomers. The latter is a very interesting case occurring for the

famous gyroid surface with Ia�3d symmetry but erroneously

assigned to I4132 by its inventor (Schoen, 1970), probably

because of the lower symmetry of the skeletal graphs, which

however are two enantiomers (cf. Fig. 1b).

Finally, we would like to recall that PNS and PES repre-

sentatives are based on simple but well chosen functions. Thus,

changing the functions results in a change of PNS and PES

which may be just a small deformation, a change of genus

under preservation of signi®cant geometrical features or a

more or less complete reorganization of the shape. This makes

them valuable tools for describing transformations between

real structures, as we will show in the following.

2. Descriptions of phase transitions using periodic
surfaces

Only a few attempts of correlating geometrical changes under

RPT with PMS or PNS have been published hitherto. The



older zero-potential-surface approach (von Schnering &

Nesper, 1987) was used to model the transition between the

rocksalt and the caesium chloride structures (Oehme, 1989).

By assigning the atomic sites of austenite to the ¯at points on

the PMS D [corresponding to a face-centred cubic (f.c.c.)

atomic arrangement] and by applying a transformation of the

Bonnet type (Bonnet, 1853), a body-centred cubic (b.c.c.)

structure arrangement that corresponds to the martensite

lattice (Hyde, 1986; Hyde & Andersson, 1986) is formed at the

end of a continuous deformation. The atomic positions were

recovered from the ¯at points of the PMS gyroid. The gyroid

surface appears as intermediate between the P and the D

surfaces along the transformation. The Bonnet transformation

is an isometric transformation, which means that it leaves all

distances on the surface unchanged. Furthermore, most of the

intermediate surfaces are self-intersecting and non-periodic.

Such a transformation is thus very speci®c and topologically

restricted because it does not allow for stretching or tearing of

the surfaces during the change of geometry. This implies that

Bonnet-type transitions are only possible between surfaces of

the same genus. The embedding of networks on such surfaces

and their transformations into each other thus applies only to

very special cases controlled by the properties of the Bonnet

transformation, which does not allow for connectivity changes.

The topological description of solid±solid reconstructive phase

transitions, which in general results in a severe reorganization

of the structures involved, like changes in interatomic rela-

tions such as coordination numbers, bond neighbours, bond

distances etc., is still a great challenge. This is just what we are

interested in modelling by our approach.

We are using the labyrinths of PES, chosen such as to

envelope the network of the structures limiting the phase

transition (Leoni, 1998) and ®nding intermediate envelope

functions such that the path is as short as possible. The

labyrinths of a PES are part of the same family of surfaces,

which can be explored by the choice of the value of f �x; y; z� in
equation (3). For a set of function values but not for all

f �x; y; z�, they have the same topological characteristic, i.e. the

same genus as the distinguished surface, the PNS. We choose

f �x; y; z� such that the genus of the PNS is preserved and the

network of interest is enclosed by a periodic surface, called an

enveloping surface. This procedure is applied to both limiting

structures, which determine the beginning and the end points

of a RPT, respectively (Leoni, 1998).

The envelope functions are now very useful descriptors of

atomic or group displacements, of bond rearrangements and

of conformational changes involved in a phase transition.

They re¯ect the deformation of a network by the change of the

connectedness of the labyrinths measured by the variation of

the genus. We interpret the change of the genus as the change

of a chemical interaction, for example bond breaking. Quali-

tatively, the onset of a reconstruction becomes already visible

in such a model in terms of narrowing of certain connections

of the PES.

In summary, our approach works as follows:

(i) De®nition of the envelope functions of the limiting

structures by choosing the smallest set(s) of Sh such that the

resulting PES show those characteristics of the structure one

wants to analyse during the RPT, like the tetrahedral network

of SiO2 considered in this paper.

(ii) Linear interpolation of the two functions and PES

calculation for each interpolation step.

(iii) Analysis of PES that exhibit change of the genus

compared with the previous PES.

(iv) Recovery of atomic positions from the centres of the

knots of the PES.

This procedure allows for an analysis of the change of the

envelope functions quasi-continuously in arbitrarily small

steps.

3. Phase transitions in the silica system

The phase system of the two most abundant elements in the

outer earth shell, silicon and oxygen (Fig. 2), is remarkable for

the many different structural variations based on tetrahedral

motifs (Greenwood & Earnshaw, 1989). The normal-pressure

high-temperature modi®cations �-quartz, �-tridymite and

�-cristobalite are closely related to their low-temperature

modi®cations �-quartz, �-tridymite and �-cristobalite,

respectively. All of them are constituted of corner-linked

tetrahedra. The change of symmetry during the �=� phase

transitions of the displacive type can be described by group±

subgroup relations. In the low-temperature � modi®cations,

the tetrahedral SiO4 units differ only in their mutual orien-

tation compared with the � modi®cations. No change of

coordination number or connectivity need occur. The way in

which each pair �=� of phases is structurally related can easily

be recognized by inspection.

The three high-temperature � modi®cations transform into

each other on heating: The chiral network of quartz turns into

the hexagonal network of tridymite and the latter ®nally into

the cubic one of cristobalite before the system vitri®es.

Despite the relatively simple looking networks, the transitions

are of an interesting reconstructive character, requiring non-

trivial rearrangements of the tetrahedral networks. This makes

this system challenging and thus an excellent example for the

applicability of the PES approach, especially to the RPT

between the � modi®cations.

In the following sections, the PES approach is applied to the

transition quartz to tridymite. Envelope functions are de®ned

for both quartz and tridymite, and the model is a linear

transition from one topology to the other.

4. The model of the tridymite structure

The high-temperature modi®cation of tridymite crystallizes

with the space-group symmetry P63=mmc. Along the c direc-

tion, the tetrahedra are corner connected in an `eclipsed'

manner and, in the other three directions, a `staggered'

sequence occurs, that is adjacent tetrahedra are rotated with

respect to each other by 60�.
While for quartz a PNS was already available (von

Schnering & Nesper, 1987, 1991), a suitable function for

tridymite had still to be found. The ®rst allowed Sh for this
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space group is based on h � �10�10�; the full set of symmetry-

equivalent vectors results in a PNS that represents a rod

packing, developing parallel to the c axis in the symmetry-

related channels of tridymite (Fig. 3a). Exploring different

values of f �x; y; z� allows one to de®ne PES that clearly reveal

the positions of the six- and threefold axes of the hexagonal

space group. The translation parts of the matrices representing

the space group do not affect the phases of this set. Addition

Figure 1
Examples of nodal surfaces (PNS) and selected correlations with crystal structures. (a) P* surface (Schwarz's P surface) (Schwarz, 1890); (b) Y** surface
(Schoen's gyroid surface) (Schoen, 1970); (c) Q* surface representative for quartz-like double-helix structures; (d) D* surface (Schwarz's D surface); (e)
S* surface (symmetry Ia�3d); ( f ) E±001

2E(P2z)c surface (tridymite representation); (g) building blocks of Li5P2N5 and D* surface with P4N10 unit
exclusively in one tunnel system of D*; (h) D* and the Al framework of VAl10; (i) Y** and the hypothetical g688 framework (Terrones & Mackay, 1997).



of the set �10�11; 1; 0�, which is characteristic for the group

owing to the speci®c phase permutations, causes the rods to

connect to each other, thus forming a continuous triply peri-

odic surface (Fig. 3c). One labyrinth is centred by the silica

network and the correct alternation of `eclipsed' and `stag-

gered' conformations appears clearly in the course of the PES

along the [001] direction. The set Sh�10�11; 0; 1� alone gives rise

to a PNS with the symmetry P63=mmc but with intersections

along some special lines, corresponding to intersections of the

c glide planes (Fig. 3b). Finally, addition of a third set of

structure factors �0002; 2� 21=2; �� provides for a PNS

enveloping the network in the desired form (Fig. 3d). Now

corresponding PES like the one in Figs. 3(e)±( f) surround the

network in such a way that the tetrahedral shape and

connectivity of the tetrahedra are approximated in a satis-

factory way (Leoni, 1998).

Acta Cryst. (2000). A56, 383±393 Leoni and Nesper � Silica phase system. I 387
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Figure 3
Construction of the tridymite representation: (a) PNS of the structure-factor set �10�10; 1; 0�; (b) PNS of the structure-factor set �10�11; 1; 0�; (c) PNS of
the structure-factor sets �10�10; 1; 0; 10�11; 1; 0�; (d) PNS of the structure-factor sets �10�10; 1; 0; 10�11; 1; 0; 0002; 2� 21=2; ��; (e) PES of the set given in (d)
for f �x; y; z� � ÿ1:5; ( f ) PES of the set given in (d) for f �x; y; z� � ÿ3:0.

Figure 2
Part of the phase diagram of SiO2. [Reproduced with permission from
Holleman-Wiberg Lehrbuch der Anorganischen Chemie (1995). Copy-
right (1995) Walter deGruyter GmbH & Co.]
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An alternative representative may be gained with

Sh�11�20; 1; 0�. The resulting PNS appears again as a rod

packing, where the rods are centred on the geometrical posi-

tions of sixfold and threefold symmetry elements. Exploration

of the PES functions allows one to discover a KagomeÂ net,

appearing on fusing the rods. The oxygen positions of high-

temperature tridymite correspond to the cross points of this

net. Addition of the set �10�11; 1; 0� to the set �10�12; 1; 0�
generates a PNS of more convoluted shape, with new channels

opened in the primer tetrahedral framework representative.

However, the PES of this function show additional features,

i.e. another set of channels that obscures the simplest picture

of the tridymite structure we are aiming at. That is why we do

not consider this function further on in this work.

5. The model of the quartz structure

The chiral framework of �-quartz is described in the space

group P6222, enantiomorphous to P6422. Its topology can very

simply be described by the set �10�11; 1; 0�, as already shown

(von Schnering & Nesper, 1991). The resulting PNS, the so-

called Q* surface, separates two equivalent point con®gura-

tions of the +Q lattice complexes from each other and is a

fundamental representation of a four-connected network

arranged in a hexagonal space group. In the real structure, the

Si atoms occupy a point con®guration of a +Q lattice complex,

just leaving space for another point con®guration of +Q, the

two of which interpenetrate without being connected to each

other but are separated by the PNS Q*. The two point

con®gurations are shifted against each other by t � �0; 0; 1=2�.
Again, the congruence of the subspaces assigns Q* to the

supergroup P6422 (von Schnering & Nesper, 1991).

The PNS representation beautifully shows the interplay of

62 and 31 screw axes in the form of a continuous topological

object (Fig. 1c, standard setting). The addition of a second set

�10�10; 1; 0� allows for a better approximation of the network

of quartz and of the tetrahedral building units that can now

easily be visualized with suitably chosen PES (cf. Fig. 4f). We

have chosen this as representative of the quartz structure.

Although the set �10�10; 1; 0� could be neglected without

changing the desired enveloping function very much, it is

necessary for the tridymite envelope and thus provides a

better comparison of the sets.

In Table 1, phase relations and indices for the common

supercell (cf. x6) exhibit nicely the difference in phase

permutations starting from a symmorphic supergroup

(P6=mmm) to P63=mmc and P6222, respectively. In the latter

case, the screw symmetry is clearly re¯ected by the phase

shifts.

6. Preparation of the phase-transition model

The structural problem of a RPT may be split into two

transformations and treated separately although both of them

belong together and proceed in parallel in real systems: (i) the

mutual correlation of the unit cells of the two limiting struc-

tures; (ii) the topological changes of the building blocks inside

the unit cells. Our approach utilizes the evaluation of a

common supercell allowing for an integer multiple of the two

different unit-cell contents. The mutual orientation is chosen

according to topological and symmetry arguments, which in

the case presented here are more or less congruent. This is

different from Toledano et al. (Dmitriev et al., 1998) who quite

recently presented an interesting transition model based on a

hypothetical b.c.c. aristotype structure (BaÈrnighausen, 1980).

Clearly, the two space groups involved in the RPT are not

connected by a direct group±subgroup relation. Although in

principle an in®nity of different mutual orientations of the two

unit cells are possible, we have chosen the one where the two

unique axes are collinear. Matching the two unit-cell contents

requires a fourfold quartz and a threefold tridymite cell,

which is easily achieved by corresponding multiples of the

c axes (c0quartz � 4� 5:460 � 21:880; c0tridymite � 3� 8:220 �
24.660 AÊ ), while the bases are relatively unaffected

(aquartz � 5:010; atridymite � 5:030 AÊ ).

The corresponding transformation matrices are

Tquartz �
1 0 0

0 1 0

0 0 4

������
������

and

Ttridymite �
1 0 0

0 1 0

0 0 3

������
������

and the corresponding supercell contains 12 SiO2 units.

Interestingly, the [001] screw vectors of the screw axes

become 1
12 c0 for the 62 and 1

6 c0 for the 63 operations, which

different orientations of the tetrahedra cannot account for

because the largest length difference in a tetrahedron occurs

on changing from the [100] to the [111] expansion if the

tetrahedron matches to one half of the vertices of a cube (cube

axes along [100], [010], [001]). Interestingly, this length change

amounts to 1.15% while the difference for the c0 axes of quartz

and tridymite is 1.12% and thus very similar but just occa-

sional because corresponding tilting of tetrahedra in the

network cannot induce a transition from a helix with pitch of 1
12

to one of 1
6. Consequently, a reconstruction of the 3D frame-

works by a bond-breaking mechanism is unavoidable in this

Table 1
Indices and phases �h for the structure-factor set �10�11; jShj; �h� in the
symmetry groups of the supercell P6=mmm, P63=mmc and P6222.

P63=mmc�c0 � 3c� and P6222�c0 � 4c� are isomorphic subgroups of
P63=mmc�c� and P6222(c), respectively.

Basis set P6=mmm
P63=mmc
tridymite

P6222
quartz

10�11 0 10�13 0 10�14 0
1�101 0 1�103 � 1�104 2�=3
0�111 0 0�113 0 0�114 4�=3
�1011 0 0�113 � 0�114 0
�1101 0 �1103 0 �1104 2�=3
01�11 0 01�13 � 01�14 4�=3



mutual setting of unit cells. Thus, the RPT has to include a

bond-breaking mechanism and a severe lowering of the

symmetry on the transition pathway.

We would like to point out that a doubling of the hexagonal

bases allows for another supercell which is commensurate with

cristobalite in trigonal setting as well. This cell contains 48

SiO2 units. An RPT model based on this cell (Leoni, 1998) will

be described in a subsequent paper.

As we a priori do not know how lattice constants should

change under such a transition, there are only two simple

possibilities: either to keep the cell volume or to interpolate

linearly between the limiting axes. As the difference occurs

mainly for c0 and is fairly small, even a constant cell volume

should do for an inspection of the RPT.

A very important task for the preparation of the transition

model is the mutual location of origins of the basic unit cells, in

other words the shift of the symmetry elements between the

two limiting structures. This is achieved by a proper choice

of the phase factors � of the structure factors Sh. We discuss

this problem with the structure factor S10�11: choosing

�tridymite�10�11� � 0; � and �quartz�10�11� � 0; 2�=3; 4�=3 super-

imposes the two sixfold axes but allows for six different mutual

shifts along [001] according to the six possible phase combi-

nations.

However, all six combinations give rise to essentially the

same topological result, as we will show in the following.

Table 2 contains the complete sets of structure factors that are

used in the transition model. The sum of the weights of the

re¯ections are chosen to be the same for both structures,

eventually by multiplying one of the functions by a factor

accounting for consideration or not of the (0006) set. At this

point, we are ready to perform the phase transition by varia-

tion of a single parameter, the mixing ratios of the two limiting

functions.

7. Quartz-to-tridymite transition

The mixing is realized as weighted addition of the two basis

functions for quartz and tridymite in steps of 10% according to

the equation

f �transition� � vf �quartz� � �1ÿ v�f �tridymite�
�v � 0; 0:1; 0:2; . . . ; 1:0�:

The display of the resulting representations is given in Figs.

4(a)±( f). The PES for f �x; y; z� � ÿ3:0 is displayed for each

step. A corresponding ball-and-stick model for each inter-

mediate structure results if an Si atom is placed at the centre of

the knots of the labyrinths.

The centres are evaluated by contracting the PES, i.e. by

increasing jf �x; y; z�j until a reasonable envelope function is

produced. In this context, reasonable means that the PES

representatives of a structure ± as we de®ne them here ± are

only approximate envelopes of the observed geometry. For

example, the function for tridymite given in Table 2 allows one

to localize the Si position at 1=3 2=3 0:071 while the experi-

mental data transformed to this setting are 1=3 2=3 0:0625

(Sato, 1964). This leads to a difference in the SiÐOÐSi

separation of 0.19 AÊ (2.89 versus 3.08 AÊ , respectively).

After the functions have been mixed in the proportion 90%

tridymite to 10% quartz, the tetrahedral networks opens at 1
4

of all links (one SiÐOÐSi connection at each Si centre) and

thus a change of the genus of the PES occurs. The SiÐSi

vectors that are disected are parallel to the direction [631]

and its symmetry-related directions based on the tridymite

symmetry. However, at a given level in z all broken connec-

tions are parallel, i.e. broken connections along [631], [�961],

[3�91] occur at different layers in z, respectively. Changing the

phase angle ��S10�11� from 0 to 2�=3 or 4�=3 interchanges the

direction-to-z correlation accordingly. Thus, 1
4 of all connec-

tions are broken, one connection at each silicon centre. In

other words, one of the connections becomes rapidly longer in

this model while the other three connecting vectors are

moving towards a common plane with the central silicon site.

At the transition point ± at 50%:50% mixing ratio ± this site

has a trigonal planar coordination. Beyond this point, the local

geometry around the silicon sites approaches the tetrahedral

coordination of the quartz structure. Locally, the whole RPT

model consists of an inversion at each silicon centre. This kind

of local transformation is referred to as an SN2 reaction in

chemistry.

8. The transition framework

The intermediate structure deserves special attention. As was

mentioned previously, the opening of a bond at each tetra-

hedral centre gives rise to a 3-connected network, consisting of

10-gons. If we only focus on the Si sites, then this kind of

network is similar to the tetragonal silicon network found in

�-ThSi2. In fact, both the intermediate and the �-ThSi2

structures contain a set of zigzag chains that are linked to form

a 3D net (cf. Fig. 5a). After Wells, the net is of the (10, 3)-b

type. In the tetragonal net, consecutive chains along [001] are

rotated by 90� against each other (Wells, 1991). The idealized

net formed by the boron atoms in B2O3 at ambient pressure is

of type (10, 3)-c. It is built up by the same type of zigzag chains

but rotated by 120� with respect to each other along [001] (cf.

Fig. 5b). In the real structure, the planes of the zigzag chains

are tilted away from the [001] zone as shown in Fig. 5(c), which

reduces the symmetry to P31. In our transition intermediate

(Fig. 5d), the angles for the tilting of the chains around [001]

are such that only a P21 symmetry remains for the supercell.

According to the three decomposition possibilities of the

Acta Cryst. (2000). A56, 383±393 Leoni and Nesper � Silica phase system. I 389

research papers

Table 2
Sets of structure factors used for the transition model.

P63=mmc
tridymite

P6222
quartz

10�11 �20�23; 1; 0� �20�24; 1; 0�
10�10 �20�20; 1; 0� �20�20; 1; 0�
0002 �0006; 2� 21=2; �� ±
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Figure 4
PES model of the phase transition and stick-and-ball arrangements recovered from the corresponding surface representations: (a) tridymite structure
and PES for f �x; y; z� � ÿ3; (b) linear mixing of tridymite and quartz representatives (90%:10%) ± one SiÐOÐSi connection per Si centre is already
lost; (c) transition state with trigonal planar nodes for a mixing ratio of 50% tridymite to 50% quartz; (d), (e) linear mixing of tridymite and quartz
representatives at 40%:60% and 10%:90% mixing ratio ± recovery of the pyramidal conformation; ( f ) quartz structure and PES for f �x; y; z� � ÿ3. The
missing fourth SiÐOÐSi connection per Si centre has been re-established. The net geometrical change is an inversion at each silicon centre, which,
however, does not directly explain possible pathways of the O atoms. (g)±(l) Detail of the formal inversion at a silicon centre.
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Figure 5
Comparison of the intermediate structure with known structural types. (a) (10, 3)-b net of symmetry I41=amd, corresponding to the silicon net in
tetragonal �-ThSi2. (b) (10, 3)-c net of symmetry P3112. (c) Net formed by the B atoms in trigonal B2O3, symmetry P31. (d) Intermediate transition
structure. The cell choices for B2O3 and for the intermediate have been adapted to allow a better comparison with the ideal models.

Figure 6
Concerted transition model for the O atoms going from the quartz to the tridymite structure. Two steps close to the intermediate structure are displayed,
corresponding to a mixing of tridymite and quartz representatives at (a) 30%:70% and (b) 70%:30%. Two connections representing SiÐOÐSi bonds in
the limiting structures are visible. The movement of the silicon network as it is calculated in this paper (orange arrows), causing the opening of large
voids, and the correlated movement of O atoms (blue circles) according to the bright blue arrows allows for a ®ve-coordinated transition state at each
silicon centre. This would energetically be much more favourable than the triply coordinated one (no complete breaking of bonds).
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hexagonal to monoclinic symmetry, there are three such

equivalent solutions for the intermediate.

9. Comparison with other RPT models

To our knowledge, a RPT model for the quartz-to-tridymite

conversion as presented here has not been proposed before.

As mentioned in the beginning, there are very interesting

models by Toledano et al. (Dmitriev et al., 1998) and by Jacob

et al. (Jacob, 1994; Lidin et al., 1992). In the approach by

Toledano, a b.c.c. structure is de®ned as a common aristotype.

All transformations between SiO2 modi®cations and the b.c.c.

structure are analysed and some combined transformations

according to modi®cation a ! b.c.c. ! modi®cation b are

explored but not the quartz±tridymite transition. In any case,

there is a marked difference between their approach and ours:

(i) the mutual orientations of quartz and tridymite in the b.c.c.

`subcell' do not arrange the unique axes in a collinear fashion;

(ii) the necessary distortions of the unit cells are much larger

via the b.c.c. parent structure than in our case; (iii) they do not

give a quantitative topological analysis of how the SiO2

framework would change locally under the RPT, although

some conjectures on the structure of the transition inter-

mediates are given.

The RPT model of Jacob et al. implements a so-called local

bond-¯ip mechanism. The RPT is achieved by a breaking and

a reformation of a total of six bonds per one double tetra-

hedron O3/2SiÐOÐSiO3/2 in connection with a rotation of this

group. Although a more economical way may be derived by a

different rotation and a breaking of a total of four bonds, it is

still even in this respect very much different from our model

where only one bond per SiO4/2 group is reconnected.

10. Consideration of the oxygen migration

As the oxygen centres are not explicitly included, for the

reasons mentioned, we cannot follow their behaviour in our

model as de®ned above. Although one could expand the

Fourier series with respect to a proper location of the oxygen

positions in the limiting structures, one would lose the

simplicity of the topological description. In any case, as long as

the functions do show tetrahedral connections, an oxygen is

unambiguously localized in the tunnel connecting two Si

centres. However, cutting the latter will not allow for a

geometrical localization of the O atoms any more, as the

model accounts only for the variation of connectedness at the

silicon centres and for their displacement.

Assuming the movement of the Si centres is reasonable, we

can search for shortest oxygen migration ways in the silicon

framework of the model. Our result is a two-O-atom four-

centre transition path, which is displayed in Figs. 6(a)±(b). The

O atoms are indicated by small spheres between the silicon

nodes and their most probable migrations are referred to by

the straight arrows. The OÐO repulsion would effectively

lead to a rotation of SiO4 tetrahedra around Si centres. This

type of transition would proceed via a ®vefold local transition

coordination.

11. Conclusions

A topologically simple and short transition mechanism for the

RPT between quartz and tridymite has been derived utilizing

periodic nodal (PNS) and equi-surfaces (PES) as transition

descriptors between the limiting structures of the two phases.

These descriptors, called structure representatives, can easily

be developed from the Fourier transforms of short but char-

acteristic series of selected structure-factor sets of a common

supercell of the limiting structures. Linear interpolation

between the limiting PES functions allows for a continuous

topological transition. Changes of the genus during the tran-

sition are interpreted as severe reconstruction, i.e. bond

breaking which may accompany the continuous distortions of

the representatives along the transition path. Relevant posi-

tional parameters are recovered from selected PES for large

absolute function values which correspond to cross-linking

parts or knots of the continuous representatives at lower

absolute function values. Analysis of both the combined

structure-factor sets of the limiting structures and the changes

of the real-space coordinates allows for a detailed symmetry

analysis (picture?) of the transition model. Although starting

from either of the limiting structures the symmetry markedly

decreases, the continuous nature of the model allows one to

derive mutual atomic movements for the whole transition. The

RPT model presented is not necessarily meant to describe a

collective transition of large domains but may just account for

the possibility of topologically short and effective local

distributions and reconstructions.

It should ®nally be noted that this RPT model may not

correspond to the pathway of lowest energy, especially

because of the periodic nature of the Ansatz leading to a large

number of excitations that had to be performed simulta-

neously. Thus, the continuous cooperative and periodic tran-

sition model presented is a study of the topological feasibility

of a short or simple transition pathway. The same Ansatz has

been applied to other RPT and the results will be presented in

subsequent papers.
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